AOP-Wiki SPARQL Endpoint
This service is a Virtuoso SPARQL endpoint that is loaded with RDF of the Adverse Outcome Pathway (AOP)-Wiki database (https://aopwiki.org/), based on the quarterly XML dumps that are provided. The AOP-Wiki serves as the primary repository of qualitative information for AOPs and is a central component in the AOP development effort coordinated by the Organisation for Economic Co-operation and Development (OECD). The database contains AOP which are described in terms of key events (KEs). An AOP is initiated by a stressor (e.g. a chemical) that causes a Molecular Initiating Event, which is followed by KEs (measurable, essential steps) along a pathway towards an adverse outcome for an organism or population. KEs are connected through Key Event Relationships (KERs), which capture the evidence supporting the AOP in a structured way. The AOP-Wiki website provides access to the AOP information via a web interface to look up AOPs, KEs, KERs, and stressors.
For end-users
For developers
Type:
Database / data source
API Type:
SPARQL
Categories:
Knowledge bases and data mining
Applicability domain:
Toxicology, Bioinformatics
Topic:
Risk assessment, Information extraction
Targeted industry:
Chemicals, Nanotechnology, Drugs, Cosmetics, Food, Other consumer products
Targeted users:
Risk assessors, Researchers, Software Developers, Data managers, Regulators
Relevant OpenRiskNet case study:
AOPLink - Identification and Linking of Data related to AOPWiki
Provided by:
Maastricht University
Login required:
No
Implementation status:
Containerised
Integration status:
Integration in progress
Service integration operations completed:
Utilises the OpenRiskNet APIs to ensure that each service is accessible to our proposed interoperability layer.
Is annotated according to the semantic interoperability layer concept using defined ontologies.
Is containerised for easy deployment in virtual environments of OpenRiskNet instances.
Has documented scientific and technical background.
Is deployed into the OpenRiskNet reference environment.
Is listed in the OpenRiskNet discovery services.
Is listed in other central repositories like eInfraCentral, bio.tools and TeSS (ELIXIR).
Provides legal and ethical statements on how the service can be used.
Resources & Training
Case Study report - Identification and Linking of Data related to AOPs of AOP-Wiki [AOPLink]
11 Dec 2019
←
Abstract:
The Adverse Outcome Pathway (AOP) concept has been introduced to support risk assessment (Ankley et al., 2010). An AOP is initiated upon exposure to a stressor that causes a Molecular Initiating Event (MIE), followed by a series of Key Events (KEs) on increasing levels of biological organization. Eventually, the chain of KEs ends with the Adverse Outcome (AO), which describes the phenotypic outcome, disease, or the effect on the population. In general, an AOP captures mechanistic knowledge of a sequence of toxicological responses after exposure to a stressor. While starting with molecular information, for example, the initial interaction of a chemical with a cell, the AOPs contain information of downstream responses of the tissue, organ, individual and population. Currently, AOPs are stored in the AOP-Wiki, a collaborative platform to exchange mechanistic toxicological knowledge as a part of the AOP-KB, an initiative by the OECD. Normally, AOP development starts with a thorough literature search for existing knowledge, describing the sequence of KEs that form the AOP. However, the use of AOPs for regulatory purposes also requires detailed validation and linking to existing knowledge (Knapen et al., 2015; Burgdorf et al., 2017). Part of the development of AOPs is the search for data that supports the occurrence and biological plausibility of KEs and their relationships (KERs). This type of data can be found in literature, and increasingly in public databases. The main goal of this case study is to establish the links between AOPs of the AOP-Wiki and experimental data to support a particular AOP. This will allow finding AOPs related to experimental data, and finding data related to a particular AOP.
The Adverse Outcome Pathway (AOP) concept has been introduced to support risk assessment (Ankley et al., 2010). An AOP is initiated upon exposure to a stressor that causes a Molecular Initiating Event (MIE), followed by a series of Key Events (KEs) on increasing levels of biological organization. Eventually, the chain of KEs ends with the Adverse Outcome (AO), which describes the phenotypic outcome, disease, or the effect on the population. In general, an AOP captures mechanistic knowledge of a sequence of toxicological responses after exposure to a stressor. While starting with molecular information, for example, the initial interaction of a chemical with a cell, the AOPs contain information of downstream responses of the tissue, organ, individual and population. Currently, AOPs are stored in the AOP-Wiki, a collaborative platform to exchange mechanistic toxicological knowledge as a part of the AOP-KB, an initiative by the OECD. Normally, AOP development starts with a thorough literature search for existing knowledge, describing the sequence of KEs that form the AOP. However, the use of AOPs for regulatory purposes also requires detailed validation and linking to existing knowledge (Knapen et al., 2015; Burgdorf et al., 2017). Part of the development of AOPs is the search for data that supports the occurrence and biological plausibility of KEs and their relationships (KERs). This type of data can be found in literature, and increasingly in public databases. The main goal of this case study is to establish the links between AOPs of the AOP-Wiki and experimental data to support a particular AOP. This will allow finding AOPs related to experimental data, and finding data related to a particular AOP.
Additional materials:
Report
Report
Publisher: OpenRiskNet
Target audience: Risk assessors, Researchers, Students, Nanosafety community, Data modellers, Bioinformaticians
Open access: yes
Licence: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Organisations involved: UM
Connecting Adverse Outcome Pathways, knowledge and data with AOPLink workflows
16 Jul 2019
←
Related services:
BridgeDb identifier mapping service
AOP-Wiki SPARQL Endpoint
ToxTargetLinks
The Adverse Outcome Pathway Database (AOP-DB)
BridgeDb identifier mapping service
AOP-Wiki SPARQL Endpoint
ToxTargetLinks
The Adverse Outcome Pathway Database (AOP-DB)
Target audience: Risk assessors, Researchers, Students, Nanosafety community, Regulators, Bioinformaticians
Open access: yes
Licence: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Organisations involved: UM
Connecting Adverse Outcome Pathways, knowledge and data with AOPLink workflows
15 Jul 2019
←
Additional materials:
Slides
Slides
Related services:
BridgeDb identifier mapping service
AOP-Wiki SPARQL Endpoint
ToxTargetLinks
The Adverse Outcome Pathway Database (AOP-DB)
BridgeDb identifier mapping service
AOP-Wiki SPARQL Endpoint
ToxTargetLinks
The Adverse Outcome Pathway Database (AOP-DB)
Target audience: Risk assessors, Researchers, Students, Nanosafety community, Data modellers, Bioinformaticians
Open access: yes
Licence: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Organisations involved: UM
AOP-Wiki Resource Description Framework
4 Jul 2019
←
Additional materials:
Slides
Slides
Target audience: Nanosafety community
Open access: yes
Licence: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Organisations involved: UM
Identification and linking of data related to AOPWiki
27 Mar 2019
←
Publisher: OpenRiskNet
Target audience: Risk assessors, Researchers, Students, Data modellers, Bioinformaticians
Open access: yes
Licence: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Organisations involved: EwC, UM
AOPLink - Linking experimental data to Adverse Outcome Pathways
27 Mar 2019
←
Additional materials:
Slides
Slides
Related services:
BridgeDb identifier mapping service
AOP-DB SPARQL Endpoint
AOP-Wiki SPARQL Endpoint
ToxTargetLinks
BridgeDb identifier mapping service
AOP-DB SPARQL Endpoint
AOP-Wiki SPARQL Endpoint
ToxTargetLinks
Publisher: OpenRiskNet
Target audience: Risk assessors, Researchers, Students, Data modellers, Bioinformaticians
Open access: yes
Licence: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Organisations involved: UM
Expanding Adverse Outcome Pathway knowledge by creating AOP-Wiki RDF with semantic annotations to facilitate risk assessment of chemicals.
19 Feb 2019
←
Abstract:
1. Introduction With the ever-growing number of chemicals that require toxicological risk assessment, there is a need for faster, more efficient use of existing data to assemble effective assessment strategies [1]. Therefore, the concept of Adverse Outcome Pathways (AOPs) was introduced [2], a framework to organize existing mechanistic information about toxicological processes into a chain of smaller pieces of knowledge, called Key Events (KEs). These allow the structuring of toxicological knowledge and reduce the effort needed to capture all information before performing risk assessment [2, 3]. In order to facilitate a community effort in gathering toxicological knowledge, the AOP-Wiki was created by the European Commission JRC and the US EPA. To integrate this knowledge base more easily with other resources, we explored the use of semantic web technologies to link AOP-Wiki with other chemical and biological databases. 2. Approach The AOP-Wiki provides quarterly permanent downloads for the full database XML (https://aopwiki.org/downloads/). We parsed the AOP-Wiki knowledge with Python 3.5 and the ElementTree XML API and converted it into a semantic web RDF format, which allows for accurate description with ontological annotations, including the AOPO, CHEMINF, and Dublin Core. Chemical compounds are identified in the AOP-Wiki with CAS numbers and biological processes with a variety of ontologies, e.g. GO, Mammalian Phenotype Ontology, and Molecular Interactions ontology. These annotations are used to create Internationalized Resource Identifiers. To integrate and test the RDF, a variety of federated SPARQL queries were written and executed in Blazegraph (build version 2.1.4). 3. Results We created an AOP-Wiki RDF scheme and converted the XML into Turtle syntax. The RDF was tested with a variety of SPARQL queries to answer biological question relevant to risk assessment, such as: - What measurement / test-method information is available for a given AOP? - Which of the stressor chemicals on the AOP-Wiki can be linked molecular pathways on WikiPathways? 4. Discussion The RDF transformation of AOP-Wiki content can assist in the accessibility and expansion of toxicological knowledge by allowing semantic interoperability. The created RDF of the AOP-Wiki allows the querying and providing of additional information for stressor chemicals, genes, and proteins involved in KEs, the underlying molecular pathways, but also for the applicability of AOPs by cell types or species. This semantic approach allows novel ways to explore the rapidly growing AOP knowledge with every new publication related to toxicological studies. There is work in progress on a Virtuoso SPARQL endpoint Docker image to simplify the use of the data, and integrate the database in the OpenRiskNet e-infrastructure to provide AOP knowledge useful for automated risk assessment workflows. Funding This project has received funding from the European Union’s Horizon 2020 (EU 2020) research and innovation program under grant agreement no. 681002 (EU-ToxRisk) and EINFRA-22-2016 program under grant agreement no. 731075 (OpenRiskNet).
1. Introduction With the ever-growing number of chemicals that require toxicological risk assessment, there is a need for faster, more efficient use of existing data to assemble effective assessment strategies [1]. Therefore, the concept of Adverse Outcome Pathways (AOPs) was introduced [2], a framework to organize existing mechanistic information about toxicological processes into a chain of smaller pieces of knowledge, called Key Events (KEs). These allow the structuring of toxicological knowledge and reduce the effort needed to capture all information before performing risk assessment [2, 3]. In order to facilitate a community effort in gathering toxicological knowledge, the AOP-Wiki was created by the European Commission JRC and the US EPA. To integrate this knowledge base more easily with other resources, we explored the use of semantic web technologies to link AOP-Wiki with other chemical and biological databases. 2. Approach The AOP-Wiki provides quarterly permanent downloads for the full database XML (https://aopwiki.org/downloads/). We parsed the AOP-Wiki knowledge with Python 3.5 and the ElementTree XML API and converted it into a semantic web RDF format, which allows for accurate description with ontological annotations, including the AOPO, CHEMINF, and Dublin Core. Chemical compounds are identified in the AOP-Wiki with CAS numbers and biological processes with a variety of ontologies, e.g. GO, Mammalian Phenotype Ontology, and Molecular Interactions ontology. These annotations are used to create Internationalized Resource Identifiers. To integrate and test the RDF, a variety of federated SPARQL queries were written and executed in Blazegraph (build version 2.1.4). 3. Results We created an AOP-Wiki RDF scheme and converted the XML into Turtle syntax. The RDF was tested with a variety of SPARQL queries to answer biological question relevant to risk assessment, such as: - What measurement / test-method information is available for a given AOP? - Which of the stressor chemicals on the AOP-Wiki can be linked molecular pathways on WikiPathways? 4. Discussion The RDF transformation of AOP-Wiki content can assist in the accessibility and expansion of toxicological knowledge by allowing semantic interoperability. The created RDF of the AOP-Wiki allows the querying and providing of additional information for stressor chemicals, genes, and proteins involved in KEs, the underlying molecular pathways, but also for the applicability of AOPs by cell types or species. This semantic approach allows novel ways to explore the rapidly growing AOP knowledge with every new publication related to toxicological studies. There is work in progress on a Virtuoso SPARQL endpoint Docker image to simplify the use of the data, and integrate the database in the OpenRiskNet e-infrastructure to provide AOP knowledge useful for automated risk assessment workflows. Funding This project has received funding from the European Union’s Horizon 2020 (EU 2020) research and innovation program under grant agreement no. 681002 (EU-ToxRisk) and EINFRA-22-2016 program under grant agreement no. 731075 (OpenRiskNet).
Target audience: Risk assessors, Researchers, Data managers, Data owners, OpenRiskNet stakeholders, Regulators, Bioinformaticians, Software developers, Data providers
Open access: yes
Licence: Attribution 4.0 International (CC BY 4.0)
Organisations involved: UM
Introducing WikiPathways as a data-source to support Adverse Outcome Pathways for regulatory risk assessment of chemicals and nanomaterials
4 Dec 2018
→ doi: 10.3389/fgene.2018.00661
←
Abstract:
A paradigm shift is taking place in risk assessment to replace animal models, reduce the number of economic resources, and refine the methodologies to test the growing number of chemicals and nanomaterials. Therefore, approaches such as transcriptomics, proteomics, and metabolomics have become valuable tools in toxicological research, and are finding their way into regulatory toxicity. One promising framework to bridge the gap between the molecular-level measurements and risk assessment is the concept of Adverse Outcome Pathways (AOPs). These pathways comprise mechanistic knowledge and connect biological events from a molecular level towards an adverse effect outcome after exposure to a chemical. However, the implementation of omics-based approaches in the AOPs and their acceptance by the risk assessment community is still a challenge.
A paradigm shift is taking place in risk assessment to replace animal models, reduce the number of economic resources, and refine the methodologies to test the growing number of chemicals and nanomaterials. Therefore, approaches such as transcriptomics, proteomics, and metabolomics have become valuable tools in toxicological research, and are finding their way into regulatory toxicity. One promising framework to bridge the gap between the molecular-level measurements and risk assessment is the concept of Adverse Outcome Pathways (AOPs). These pathways comprise mechanistic knowledge and connect biological events from a molecular level towards an adverse effect outcome after exposure to a chemical. However, the implementation of omics-based approaches in the AOPs and their acceptance by the risk assessment community is still a challenge.
Published in: Frontiers in Genetics
Publisher: Frontiers
Target audience: Risk assessors, Researchers, Regulators, Bioinformaticians
Organisations involved: UM